Characterisation of Ikoma lyssavirus

Dr Anthony R. Fooks
Wildlife Zoonoses and Vector-borne Diseases Research Group
Animal Health and Veterinary Laboratories Agency – Weybridge (UK)

University of Liverpool, National Centre for Zoonosis Research - UK
OIE Reference Laboratory for Rabies
World Health Organisation Communicable Disease Surveillance and Response Collabrating Centre for the characterisation of rabies and rabies-related viruses

Tony.Fooks@ahvla.gsi.gov.uk
Acknowledgements

AHVLA team:
Ashley Banyard
Dan Horton
Nick Johnson
Lorraine McElhinney

Denise Marston
Karen Mansfield
Trudy Goddard
Hubert Buczkowski

Derek Healy
Dave Selden
Hooman Goharriz
Claire Jeffries
Emma Wise
Katja Voller

Fiona McKinnon
Sue Evans

University of Glasgow, UK
Sarah Cleaveland
Tiziana Lembo
Katie Hampson

University of Cambridge, UK
Alison Peel

Tanzania Veterinary Laboratory Agency, Tanzania
Chanasa Ngeleja

Tanzania Wildlife Research Institute, Arusha
Julius Keyyu

Serengeti Health Initiative / Lincoln Park Zoo
Arusha, Tanzania
Dr Machunde Bigambo

CDC-USA
Lillian Orciari
Michael Niezgoda

GARC
Charles Rupprecht

Serengeti Health Initiative
Tanzania Wildlife Research Institute
Tanzania National Parks
Ministry of Livestock and Fisheries Development
Tanzania Commission for Science and Technology
Ngorongoro Conservation Area Authority
Family *Rhabdoviridae*: Genus Lyssavirus

- Classical rabies virus
- Lagos bat
- Mokola
- Duvenhage
- European bat lyssavirus 1
- European bat lyssavirus 2
- Australian bat lyssavirus
- Aravan virus
- Khujand virus
- Irkut virus
- West Caucasian bat virus
- Shimoni bat lyssavirus
- *Bokeloh bat lyssavirus (Germany) - 2011*
- *Ikoma lyssavirus (Tanzania) – 2012*
- *Lleida Bat Lyssavirus (Spain) – 2012*

* Tentative species
Tanzania & Serengeti National Park

- SNP oldest park in Tanzania
- No human habitation
 - apart from those involved in conservation programs
SNP and control of rabies

- Canine RABV only known source of rabies in Tanzania
- Mass dog vaccination campaigns began in 2003 to keep SNP free from rabies
 - rabies free since 2000
 - No rabies cases within 50km radius
Case Information

- 11th May 2009 in Ikoma Ward
 - Ikoma Lyssavirus (IKOV)

- African Civet entered the small village of workers in SNP, bit child on right leg
- Behaviour unusual
- Rangers were called and African civet was shot
- Brain and salivary gland tissues were sampled
Diagnostic results for IKOV

- dRit positive
- FAT (OIE standard) positive (unusual staining)
- RT-PCR positive
- Real-time RT-PCR positive
Genetic comparison with Tanzanian sequences

- Diagnostic RT-PCR sequence analysis
 Nucleoprotein (400bp)

Percent Identity

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>64.4</td>
<td>64.4</td>
<td>64.4</td>
<td>64.4</td>
<td>64.7</td>
<td>64.6</td>
<td>64.7</td>
<td>64.4</td>
<td>64.4</td>
<td>64.4</td>
<td>64.2</td>
<td>64.2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>49.1</td>
<td>92.6</td>
<td>98.0</td>
<td>98.0</td>
<td>98.0</td>
<td>98.0</td>
<td>98.0</td>
<td>98.0</td>
<td>98.0</td>
<td>98.0</td>
<td>98.0</td>
<td>96.5</td>
<td>96.5</td>
</tr>
<tr>
<td>3</td>
<td>49.0</td>
<td>7.9</td>
<td>92.6</td>
<td>93.1</td>
<td>92.6</td>
<td>93.1</td>
<td>93.1</td>
<td>93.3</td>
<td>93.6</td>
<td>93.6</td>
<td>93.1</td>
<td>93.1</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>49.1</td>
<td>2.0</td>
<td>7.9</td>
<td>99.0</td>
<td>100.0</td>
<td>99.0</td>
<td>99.0</td>
<td>99.0</td>
<td>99.0</td>
<td>99.0</td>
<td>99.0</td>
<td>99.0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>48.6</td>
<td>2.0</td>
<td>7.4</td>
<td>1.0</td>
<td>99.0</td>
<td>100.0</td>
<td>100.0</td>
<td>97.3</td>
<td>99.5</td>
<td>99.5</td>
<td>97.0</td>
<td>97.0</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>49.1</td>
<td>2.0</td>
<td>7.9</td>
<td>0.0</td>
<td>1.0</td>
<td>99.0</td>
<td>99.0</td>
<td>99.0</td>
<td>99.0</td>
<td>99.0</td>
<td>99.0</td>
<td>99.0</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>48.7</td>
<td>2.0</td>
<td>7.4</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>100.0</td>
<td>97.3</td>
<td>99.5</td>
<td>99.5</td>
<td>97.0</td>
<td>97.0</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>48.6</td>
<td>2.0</td>
<td>7.4</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>97.3</td>
<td>99.5</td>
<td>99.5</td>
<td>97.0</td>
<td>97.0</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>49.1</td>
<td>3.3</td>
<td>7.1</td>
<td>3.3</td>
<td>2.8</td>
<td>3.3</td>
<td>2.8</td>
<td>2.8</td>
<td>97.3</td>
<td>97.3</td>
<td>97.3</td>
<td>99.8</td>
<td>99.8</td>
</tr>
<tr>
<td>10</td>
<td>49.0</td>
<td>2.0</td>
<td>6.8</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>2.8</td>
<td>100.0</td>
<td>97.0</td>
<td>97.0</td>
<td>97.0</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>49.0</td>
<td>2.0</td>
<td>6.8</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>2.8</td>
<td>100.0</td>
<td>97.0</td>
<td>97.0</td>
<td>97.0</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>49.6</td>
<td>3.6</td>
<td>7.4</td>
<td>3.6</td>
<td>3.1</td>
<td>3.6</td>
<td>3.1</td>
<td>3.1</td>
<td>0.2</td>
<td>3.0</td>
<td>3.0</td>
<td>100.0</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>49.6</td>
<td>3.6</td>
<td>7.4</td>
<td>3.6</td>
<td>3.1</td>
<td>3.6</td>
<td>3.1</td>
<td>3.1</td>
<td>0.2</td>
<td>3.0</td>
<td>3.0</td>
<td>0.0</td>
<td>13</td>
</tr>
</tbody>
</table>

Divergence

- RV1643N
- RV1655N
- RV1641N
- RV1657N
- RV1658N
- RV1640N
- RV1642N
- RV1638N
- RV1662N
- RV1663N
- RV1639N
- RV1663N
- IKOV

Canine RABV
Bayesian analysis of IKOV compared other lyssavirus sequences

- Suggests vaccines will not protect against IKOV

Phylogroup 1

Phylogroup 2

In-vitro : IKOV

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>CVS</th>
<th>IKOV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IU/ml</td>
<td>Reciprocal titre</td>
</tr>
<tr>
<td>HUMAN - 1</td>
<td>23</td>
<td>959</td>
</tr>
<tr>
<td>HUMAN - 2</td>
<td>31</td>
<td>1263</td>
</tr>
<tr>
<td>HUMAN - 3</td>
<td>1093</td>
<td>34092</td>
</tr>
<tr>
<td>HUMAN - 4</td>
<td>1093</td>
<td>34092</td>
</tr>
<tr>
<td>DOG 1</td>
<td>53</td>
<td>1263</td>
</tr>
<tr>
<td>DOG 2</td>
<td>41</td>
<td>960</td>
</tr>
<tr>
<td>DOG 3</td>
<td>1094</td>
<td>25904</td>
</tr>
<tr>
<td>DOG 4</td>
<td>122</td>
<td>2878</td>
</tr>
<tr>
<td>DOG 5</td>
<td>365</td>
<td>8635</td>
</tr>
<tr>
<td>DOG 6</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>DOG 7</td>
<td>1094</td>
<td>34109</td>
</tr>
<tr>
<td>DOG 8</td>
<td>364</td>
<td>11364</td>
</tr>
<tr>
<td>DOG 9</td>
<td>14</td>
<td>421</td>
</tr>
<tr>
<td>DOG 10</td>
<td>41</td>
<td>1263</td>
</tr>
<tr>
<td>HRIG</td>
<td>270</td>
<td>nd</td>
</tr>
</tbody>
</table>
In vivo: IKOV pathogenesis

- **IKOV**
 - Passage 6 (BHK)
 - $10^{4.8}$ TCID$_{50}$/ml
 - 5 OF1 mice per group
 - 4 wks old

- OF1 mice vaccinated with VERORAB IP
- >95% seroconverted (by CVS pseudotype assay)
- Challenged (8wks) with
 - IKOV $10^{4.8}$ TCID$_{50}$ IC : 19/19 died (all controls died)
Conclusions

- Novel Lyssavirus identified in African Civet showing clinical signs
- Detected by diagnostic assays
- Full genome sequence obtained using 454
 - No reference sequence
 - Virus hunting holy grail
- Initial sequence analysis:
 - divergent from all known lyssaviruses
 - likely reservoir species bat
 - sequence indicates little or no cross-protection from vaccines
- Highlights importance of typing all rabies cases
Model Guided Fieldwork

1. Ecological model generation.
 - Explicit assumptions
 - Observable variables
 - Underlying processes

2. Model exploration
 Evaluate sensitivity, interactions and mechanistic hypotheses

3. Study design
 - Choice of variables to measure
 - Sampling design
 - Sample sizes

4. Model fitting
 - Parameter estimates and uncertainty
 - Evaluation of alternative models

5. Model validation
 - Goodness of fit
 - Predictive value
 - Parameter assessment

Conclusions and new questions

The MGF framework

What is the Reservoir Host for IKOV?

- Isolated from African Civet
 - Nocturnal
 - Solitary
- Small number of African Civets with rabies
 - RABV with canine or mongoose biotype
 - Suggests dead end, or incidental host
- Bats more appropriate suggestion
 - All lyssaviruses (except MOKV) reservoir host
 - Phylogenetically most closely related to WCBV
Reservoir Host – more evidence

- Miniopterus bat seropositive against WCBV in Kenya – 17% to 26%

- 1 Miniopterus bat seropositive against WCBV in SNP Tanzania
Bat surveillance 2012

- Samples taken from bats living in close proximity to humans
 - Within SNP
 - Villages close to SNP
- In collaboration with TAWIRI and TANAPA
Bat surveillance 2012

- Antibody (IKOV mFAVN test)
 - Chaerophon sp
 - 0/31 positive
 - Hipposideros sp
 - 0/21 positive

- Viral RNA
 - Chaerophon sp
 - 0/34 positive
 - Hipposideros sp
 - 0/18 positive
Significance of IKOV -1

- For Tanzania/Africa
 - Dogs still main reservoir and threat to human and animal health
 - Rabies cases must be typed to confirm species
 - Eco-tourism threat – Dutch tourist contracts DUVV
 - Is there a need for a broad-spectrum vaccine?
WE NEED YOU TO EAT SEVERAL TRILLION INSECTS BECAUSE THE ACTUAL BATS WERE WIPED OUT IN AN EPIDEMIC.